A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds
نویسندگان
چکیده
BACKGROUND Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda). RESULTS An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v) pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight) into 17.5% w/v solids, the final strain (AJP50) produced ethanol at more than 80% of the maximum theoretical yield after 72 hours of fermentation, and reached more than 90% of the maximum theoretical yield after 120 hours of fermentation. CONCLUSIONS Our results show that fermentation of pretreated pine containing liquid and solids, including any inhibitory compounds generated during pretreatment, is possible at higher solids loadings than those previously reported in the literature. Using our evolved strain, efficient fermentation with reduced inoculum sizes and shortened process times was possible, thereby improving the overall economic viability of a woody biomass-to-ethanol conversion process.
منابع مشابه
Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors
BACKGROUND Lignocellulosic biomass continues to be investigated as a viable source for bioethanol production. However, the pretreatment process generates inhibitory compounds that impair the growth and fermentation performance of microorganisms such as Saccharomyces cerevisiae. Pinewood specifically has been shown to be challenging in obtaining industrially relevant ethanol titers. An industria...
متن کاملCharacterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملCharacteristics of Different Brewerâs Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars
Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...
متن کاملImproving stress tolerance in industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic biomass
The present work was aimed at developing industrial S. cerevisiae strains with improved tolerance to two types of stressors encountered during the fermentation of lignocellulosic biomass that affect ethanol yield and productivity, namely hydrolysate-derived inhibitors and high temperature, and at understanding the response of yeast and mechanisms of adaptation to such stressors. In one part of ...
متن کاملHybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
BACKGROUND Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects hav...
متن کامل